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At first glance, Pascal’s triangle and Sierpinski’s triangle appear to share
nothing in common other than their triangular shape. Consider the difference in
time period when the two formations were discovered. Pascal’s triangle (an
algebraic mnemonic) was used by him in the mid-1600's, while Sierpinski’s
triangle (a fractal) became widely researched during the boom of the computer
age in the 1970’s. Centuries separate their origin, but there i1s a simple
mathematical link between the two triangles.

Blaise Pascal was born in 1623 and died in 1662, a short but brilliant life.
Pascal was a child prodigy who began attending meetings with senior French
mathematicians at the age of fourteen (Dunham, 1990). Pascal, at the age of
sixteen, submitted scholar-like material to Rene Descartes (Richardson &
Richardson, 1973). Descartes was so impressed with Pascal's writings that he
refused to believe such sophisticated and thoughtful work came from such a
young person (Dunham, 1990).

Waclaw Sierpinski, a Polish mathematician, is best known for his work
with fractals (Gulick, 1992). Sierpinski has been given credit for the discoveries
of two interesting and substantial formations, the Sierpinski triangle and the
Sierpinski carpet (Gulick). The Sierpinski carpet is a simple formation that
becomes complicated as it advances through its developmental stages.



Fractals and Construction by Iteration

The Sierpinski carpet and the Sierpinski triangle are fractals formed by a
process called iteration. When we decide we are going to perform a function's
operations over and over (for specific values of x), we output the iterates of that
fu... on (Gulick , 1992). For example, if we wanted the 5th iterate (where x = 0 is
the first iterate, and x = 1 is the second iterate, and so on) of the function

f (x)=2":
f(x)=2"= f(4)=2"'=16
The iteration process is slightly more involved when forming a fractal

such as the Sierpinski carpet. Let us look at the step-by-step process of the
formation of the Sierpinski carpet.

1. The Sierpinski carpet starts off with a square [n =0].

We then divide each side of the figure into three equal parts,
connecting the points in the following fashion.

E 3. This process divides the square into 9 smaller squares; now we
must remove the middle square. This completes one iteration[n = 1].




4, Now we must start the entire process over, performing the same
process to each of the remaining 8 squares individually. This process quickly

becomes complicated and time consuming[n =2].

3. After one more iteration, the pattern is quite evident. However, it is
approaching the limit of printing capabilities.

Sierpinski’s carpet and triangle are considered fractals for two reasons.
One, the process is infinite, and two, there is a self similarity within the figure
(i.e., if you zoom in on the first tiny square at the top left portion of the carpet, the
carpet would appear once again just as in the previous illustration). The iteration
process continues to infinity, so the picture is limited only by the graphical
capability of the source producing the carpet.

Pascal’s Triangle: Simple Yet Unlimited in Scope

In a glance at Pascal’s triangle, one sees the obvious characteristics of the
numerical structure: the numbers start at 1 and get large rapidly. Let us observe
the structure of Pascal’s triangle:
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And so on...

After a closer look, one can see that each entry in the body of the triangle
is obtained by adding the numbers in the row above to the left and the right
(Dunham, 1990). For example, in the 13th row, 792 is the result of adding 330
and 462, the numbers above 792 on the left and right. This explains why there are
:_i';_. all the way down each side. On the left side, each new “1" is formed by
adding the number above and to the right (1), and to the left (nothing).

'The Sierpinski Triangle: If You Have Seen One Portion, You
Have Seen It All

The Sierpinski triangle is formed in a way similar to Sierpinski’s carpet
with respect to an inﬁnite deleting of uhjects within the structure. However, the

Since the Sierpinski triangle is a fractal, it stems from a series of iterations
that dictate its characteristics and appearance (Gulick, 1992), We start with a
solid, equilateral triangle. (The triangle need not be equilateral, however its

ppearance is sometimes more attractive in this form.) The first step in the “shape



deleting” process involves bisecting each of the triangle’s three sides. Then we
must remove the central triangle that is formed by these three points. The deleting
of the central triangle marks the end of the first iteration. Now we must perform
the same iteration process to all three of the resulting triangles. After a few
iterations, the pattern is quite obvious and intricate.
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The Sierpinski carpet and the Sierpinski triangle theoretically are less than
two-dimensional (Gulick, 1992). The formations are on the page for us to
observe, i1n black and white (two-dimensionally), vyet they are not two-
dimensional in theory (shapes like circles, squares, and tnangles which lie in a
plane are considered two-dimensional). The black portions of the Sierpinski
carpet and triangle represent emptiness or nothingness. These portions are not a
different colored part of the fractal. They represent absence within the formation.
Let us see how mathematics allowed us to make this discovery.

If we let “N" equal the number of triangles present within the main
triangle, and if we let “L" equal the length of the sides of the remaining triangles,
the Fractal Dimension (D) of the Sierpinski triangle will be as follows:

— lim—108 N(n)
. log[1/ L(n)]

Since N(0)=1, N(1)=3, N(2)=9, N(3)=27, ... , then N(n)=3".

l Lid
Also, since L{1}=%, and L(2) =%, ... , then L{"]:[E] A

Therefore, D= lim log3 = log 3

R : 1 log2
T

= |.58496.




- In a similar way, one can show that the Sierpinski carpet has a fractal
B esion E ~1.89279. So, these fractal formations have a theoretical
'a"{n...,.r-.- of less than two! This characteristic is due to the infinite deleting that
‘oceurs during iteration.

- The dimension of these fractals is just one more aspect of this
nathematical puzzle. There is a simple manipulation that will intimately link all
of these interesting mathematical concepts together.

~ If one considers Pascal’s triangle and Sierpinski’s triangle, the initial
assumption might be that these two triangular formations share their shape as the
similarity. However, this is not so. One might ask, “How could two
ions from totally different origins, times, and backgrounds be intimately
47" Through a very simple manipulation, we are going to see just how
ally similar these triangles are.

The transformation 1s something like a game. There are two rules to the
ction. Considering Pascal’s Triangle:

I When a given number is odd, replace it with a
2 When a given number is even, replace it with a *0."”

ompleting the first two rows, no correspondence is apparent. However,
mpletion of several lines, similarity in structure to Sierpinski's triangle is
puing result!
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It seems that Pascal’'s tnangle takes on the structure of Sierpinski’s
triangle when it is reformed using the simple manipulation technique presented
above. What does this imply?

The Mathematical Link

There is a mathematical link between these two formations. The
expression 2" has a direct and consistent connection to both Pascal’'s and
Sierpinski’s triangle (Jurgens, 1992). For example, the n =2 iteration of Pascal’s
triangle (the 3™ row) has a sum of 4, which equals2’. In the n=2 iteration of
Sierpinski’s triangle, after “2 sets” of triangles have been deleted, there are 4
triangles remaining in the bottom row (smallest triangles remaining) of the
triangle, which equals 2°.

n=2 n

This pattern continues through many iterations. For example, the n=35

iteration of Pascal’s triangle (the 6™ row) has a sum of 32, which equals 2°. In the
n=>5 iteration of Sierpinski's triangle, after “5 sets” of triangles have been
deleted, there are 32 tnangles remaining in the bottom row (smallest triangles
remaining) of the triangle, which equals 2°.

Further inspection of the Sierpinski triangle reveals an additional link to
Pascal’s triangle. If you consider the rows of remaiming triangles that are fully
“connected” (All of the triangles in the row share a corner vertex with another
triangle, on each side, other than the end triangles.), you will find representations
for the sums of the rows for Pascal’s triangle from n =0 to whatever iteration of
Sierpinski’s triangle that you observe. Here is an illustration of this link using
Sierpinski’s tnangle at n =4,

I advise my students to listen carefully the woment they decide to take no

mathematics course. They might be able to hear the sound of closing doors.

James Caballero
“Everybody a mathematician?”, CAIP Quarterly, 2, Fall, 1989.
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It is true that both of the triangles display the “halving” characteristic that
logically relates them to the expression 2°. However, it is remarkable that these

two formations, so different in origin and appearance (other than their triangular
shape), are so intimately linked.

This incredible link can be shared with mathematics students in classes as
basic as elementary algebra. These students can learn about Pascal’s triangle to
expand a binomial raised to a power. After demonstrating the usefulness of
Pascal’s triangle, one could convey the concept of Sierpinski’s triangle and the
mathematical expression that categorizes the triangular concepts as “intimately

linked.”
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[The universe]l canmot be read until we have learnt the hi!ﬂimﬂﬁ and become ﬁ{mﬂmr
with the characters tn which it is written. It is written in mathematical language,
and the letters are triangles, circles and other geometrical figures, without which

eans it is haomanly impossible to comprehend a single word.

Galiles Galilel (156 4+-1642)
Operell Saggiatore, p. 171.




